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Abstract

With more and more hosts being connected to the
Internet, the importance of securing connected net-
works has increased, too. One mechanism to pro-
vide enhanced security for a network is to filter out
potentially malicious network packets. Firewalls are
designed to provide “policy-based” network filter-
ing.

A firewall may consist of several components. Its
key component is usually a packet filter. The packet
filter may be stateful to reach more informed deci-
sions. The state allows the packet filter to keep track
of established connections so that arriving packets
could be associated with them. On the other hand,
a stateless packet filter bases its decisions solely on
individual packets. With release 3.0, OpenBSD in-
cludes a new Stateful Packet Filter (pf) in the base
install. pf implements traditional packet filtering
with some additional novel algorithms. This paper
describes the design and implementation of pf and
compares its scalability and performance with ex-
isting packet filter implementations.

1 Introduction

The main emphasis of the OpenBSD project is pro-
active and effective computer security. The integra-
tion of a Stateful Packet Filter is an important as-
pect. Since 1996, Darren Reed’s IPFilter has been
included in the OpenBSD base install. It was re-
moved after its license turned out to be incompati-
ble with OpenBSD’s goal of providing software that
is free to use, modify and redistribute in any way
for everyone.
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While an acceptable Open Source license was a pre-
requisite for any replacement, we used this oppor-
tunity to develop a new packet filter that employed
optimized data structures and algorithms to achieve
good performance for stateful filtering and address
translation. The resulting code base is small and
thus facilitates future extensions.

The remainder of this paper is organized as follows.
Section 2 outlines the design of the packet filter. In
Section 3 we compare pf’s performance with other
packet filters and discuss the results. Section 4
presents future work. Finally, we conclude in Sec-
tion 5.

2 Design

The Stateful Packet Filter resides in the kernel and
inspects every IP packet that enters or leaves the
stack. It may reach one of several decisions:

• to pass a packet unmodified or modified,

• to silently block a packet, or

• to reject packet with a response, e.g., sending
a TCP reset.

The filter itself consists of two basic elements, the
filter rules and the state table.

2.1 Filter rules

Every packet is compared against the filter rule set.
The rule set consists of a linked list of rules. Each
rule contains a set of parameters that determines the
set of packets the rule applies to. The parameters
may be the source or destination address, the pro-
tocol, port numbers, etc. For a packet that matches



the rule, the specified pass or block action is taken.
Block means that the packet is dropped by the filter,
and pass means that the packet is forwarded to its
destination.

During rule set evaluation, the packet is compared
against all rules from the beginning to the end. A
packet can match more than one rule, in which case
the last matching rule is used. This mechanism
allows overriding general rules with more specific
rules, like blocking all packets first and then passing
specific packets. The last matching rule determines
if the packet is passed or blocked according to its
action field.

A matching rule that has been flagged as final ter-
minates rule evaluation for the current packet. The
action from that rule is applied to the packet. This
prevents final rules from being overridden by subse-
quent rules.

The rule set is organized in a multiple linked list.
This allows pf to perform automatic optimization of
the rule set as discussed in Section 2.8.

2.2 State table

Stateful packet filtering implies that a firewall in-
spects not only single packets, but also that it knows
about established connections. Any rule that passes
a packet may create an entry in the state table. Be-
fore the filter rule set is evaluated for a packet, the
state table is searched for a matching entry. If a
packet is part of a tracked connection, it is passed
unconditionally, without rule set evaluation.

For TCP, state matching involves checking sequence
numbers against expected windows [8], which im-
proves security against sequence number attacks.

UDP is stateless by nature: packets are considered
to be part of the same connection if the host ad-
dresses and ports match a state entry. UDP state
entries have an adaptive expiration scheme. The
first UDP packet could either be a one-shot packet
or the beginning of a UDP pseudo-connection. The
first packet will create a state entry with a low time-
out. If the other endpoint responds, pf will consider
it a pseudo-connection with bidirectional communi-
cation and allow more flexibility in the duration of
the state entry.

ICMP packets fall into two categories: ICMP error
messages which refer to other packets, and ICMP
queries and replies which are handled separately. If
an ICMP error message corresponds to a connection
in the state table, it is passed. ICMP queries and
replies create their own state, similar to UDP states.
As an example, an ICMP echo reply matches the
state an ICMP echo request created. This is neces-
sary so that applications like ping or traceroute work
across a Stateful Packet Filter.

pf stores state entries in an AVL tree. An AVL tree
is a balanced binary search tree. This container
provides efficient search functionality which scales
well for large trees. It guarantees the same O(log n)
behavior even in worst case. Although alternative
containers like hash tables allow searches in constant
time, they also have their drawbacks. Hash tables
have a fixed size by nature. As the number of en-
tries grows, collisions occur (if two entries have the
same hash value) and several entries end up in the
same hash bucket. An attacker can trigger the worst
case behavior by opening connections that lead to
hash collisions and state entries in the same hash
bucket. To accommodate this case, the hash buck-
ets themselves would have to be binary search trees,
otherwise the worst case behavior allows for denial
of service attacks. The hash table would therefore
only cover a shallow part of the entire search tree,
and reduce only the first few levels of binary search,
at considerable memory cost.

2.3 Network address translation

Network address translation (NAT) is commonly
used to allow hosts with IP addresses from a pri-
vate network to share an Internet connection using a
single route-able address. A NAT gateway replaces
the IP addresses and ports from packet that tra-
verse the gateway with its own address information.
Performing NAT in a Stateful Packet Filter is a nat-
ural extension, and pf combines NAT mappings and
state table entries. This is a key design decision
which has proved itself valuable.

The state table contains entries with three ad-
dress/port pairs: the internal, the gateway and the
external pair. Two trees contain the keys, one sorted
on internal and external pair, the other sorted on
external and gateway pair. This allows to find not
only a matching state for outgoing and incoming
packets, but also provides the NAT mapping in the



same step without additional lookup costs. pf also
supports port redirection and bidirectional transla-
tion. Application-level proxies reside in userland,
e.g., ftp-proxy which allows active mode FTP for
clients behind a NAT gateway.

2.4 Normalization

IP normalization removes interpretation ambigui-
ties from IP traffic [5]. For example, operating sys-
tems resolve overlapping IP fragments in different
ways. Some keep the old data while others replace
the old data with data from a newly arrived frag-
ment. For systems that resolve overlaps in favor of
new fragments, it is possible to rewrite the proto-
col headers after they have been inspected by the
firewall.

While OpenBSD itself is not vulnerable to fragmen-
tation attacks [3, 4], it protects machines with less
secure stacks behind it. Fragments are cached and
reassembled by pf so that any conflict between over-
lapping fragments is resolved before a packet is re-
ceived by its destination [2].

2.5 Sequence number modulation

pf can modulate TCP sequence numbers by adding
a random number to all sequence numbers of a con-
nection. This protects hosts with weak sequence
number generators from attacks.

2.6 Logging

pf logs packets via bpf [6] from a virtual network
interface called pflog0. This allows all of the exist-
ing network monitoring applications to monitor the
pf logs with minimal modifications. tcpdump can
even be used to monitor the logging device in real
time and apply arbitrary filters to display only the
applicable packets.

2.7 States vs. rule evaluation

Rule set evaluation scales with O(n), where n is the
number of rules in the set. However, state lookup

scales with O(log m), where m is the number of
states. The constant cost of one state key compar-
ison is not significantly higher than the comparison
of the parameters of one rule. This means that even
with smaller rule sets, filtering statefully is actually
more efficient as packets that match an entry in the
state table are not evaluated by the rule set.

2.8 Transparent rule set evaluation op-
timization

pf automatically optimizes the evaluation of the rule
set. If a group of consecutive rules all contain
the same parameter, e.g., “source address equals
10.1.2.3,” and a packet does not match this parame-
ter when the first rule of the group is evaluated, the
whole group of rules is skipped, as the packet can
not possibly match any of the rules in the group.

When a rule set is loaded, the kernel traverses the
set to calculate these so-called skip-steps. In each
rule, for each parameter, there is a pointer set to
the next rule that specifies a different value for the
parameter.

During rule set evaluation, if a packet does not
match a rule parameter, the pointer is used to skip
to the next rule which could match, instead of the
very next rule in the set.

The skip-steps optimization is completely transpar-
ent to the user because it happens automatically
without changing the meaning of any rule set.

The performance gain depends on the specific rule
set. In the worst case, all skip-steps have a length
of one so that no rules can be skipped during eval-
uation, because the parameters of consecutive rules
are always different. However, even in the worst
case, performance does not decrease compared to
an unoptimized version.

An average rule set, however, results in larger skip-
steps which are responsible for a significant perfor-
mance gain. The cost of evaluating a rule set is of-
ten reduced by an order of magnitude, as only every
10th to 100th rule is actually evaluated.

Firewall administrators can increase the likelihood
of skip-steps optimizations and thereby improving
the performance of rule evaluation by sorting blocks
of rules on parameters in a documented order.



Automatically generated groups of rules are already
sorted in optimal order, e.g., this happens when one
rule contains parameter lists that are expanded in-
ternally to several new rules.

3 Performance evaluation

We evaluate the performance of the packet filter by
using two hosts with two network interface cards
each, connected with two crossover Cat5 cables, in
10baseT unidirectional mode.

The tester host uses a libnet program to generate
TCP packets as ethernet frames. They are sent
through the first interface to the firewall host and
captured as ethernet frames on the second interface
of the tester using libpcap. The two hosts do not
have any other network connections.

The firewall is configured to forward IP packets be-
tween its interfaces, so that the packets sent by
the tester are forwarded through the other interface
back to the tester.

The firewall is an i386 machine with a Pentium
166 MHz CPU and 64 MB RAM; the tester is
a faster i386 machine. All four network interface
cards are identical NetGear PCI cards, using the sis
driver.

Arp table entries are static, and the only packets
traversing the wires are the packets generated by
the tester and forwarded back by the firewall.

The generated packets contain time stamps and se-
rial numbers, that allow the tester to determine la-
tency and packet loss rate.

The tester is sending packets of defined size
(bytes/packet, including ethernet header and check-
sum) at defined rates (packets/s), and measures the
rate of received packets, the average latency and loss
rate (percentage of packets lost). For each combina-
tion, the measuring period is at least ten seconds.
Latency is the average for all packets returned to
the tester during the measuring period. Lost pack-
ets are not counted towards latency.

Successively, the following tests are repeated with
the same firewall running OpenBSD 3.0 with pf,
OpenBSD 3.0 with IPFilter and GNU/Linux Red-

Hat 7.2 with iptables.

3.1 Unfiltered

The first test is run without interposing the packet
filter into the network stack on the firewall.

Figure 1 shows that both the tester and the fire-
wall are able to handle packets at the maximum
frame rate [1] for all packet sizes of 128 bytes and
above. All further tests are done using packet sizes
of either 128 or 256 bytes. The degradation for the
GNU/Linux machine seems slightly worse than for
the OpenBSD machine.

3.2 Stateless filtering with increasing
rule set size

In the second test, the packet filter is enabled and
the size of the filter rule set is increased repeat-
edly. The rules are chosen so that the packet filter is
forced to evaluate the entire rule set and then pass
each packet without creating state table entries.
The generated packets contain random port num-
bers to defeat any mechanisms used by the packet
filter to cache rule set evaluations.

Figures 2, 3 and 4 show throughput, latency and
loss depending on sending rate, for a set of 100 rules,
using 256 byte packets. Iptables outperforms both pf
and IPFilter in this test. It has a higher maximum
throughput and lower latency compared to the other
two packet filters.

Each packet filter has a distinct maximum lossless
throughput. If the sending rate exceeds this maxi-
mum, latency increases quickly and packet loss oc-
curs. For all three filters, latency is nearly identical
below the maximum lossless rate. When the sending
rate is increased beyond the point where loss occurs,
throughput actually decreases. In such overloaded
condition, all three packet filter consume all CPU re-
sources and the console becomes unresponsive. Af-
ter the sending rate is lowered below the maximum
throughput rate, each one of them recovers quickly.

The test is repeated with various rule set sizes be-
tween one and ten thousand. For each rule set
size, the maximum throughput rate possible with-
out packet loss is noted. The results are shown in
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Figure 1: Unfiltered
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Figure 2: Stateless filtering with 100 rules (throughput)

Figure 5 as a function of the rule set size. Both
pf and IPFilter evaluate the rule set twice for each
packet, once incoming on the first interface and once
outgoing on the second interface. Iptables’ perfor-
mance advantage is due to the fact that it evaluates
the rule set only once by using a forwarding chain.
The forwarding chain evaluates the rules set based
on a packet’s complete path through the machine.

3.3 Stateful filtering with increasing
state table size

The third test uses a rule set that contains only a
single rule to pass all packets statefully, i.e., new
state is created for packets that do not belong to
any connection tracked by the existing state. To
prime the state table, the tester establishes a de-
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Figure 3: Stateless filtering with 100 rules (latency)
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Figure 4: Stateless filtering with 100 rules (loss)

fined number of connections with itself by complet-
ing TCP handshakes. After all connections are es-
tablished, the tester sends random packets matching
the established connections with uniform distribu-
tion. During the entire test, all state table entries
are used, no entries time out and no new entries
are added. Iptables is not included in the stateful
tests as it does not perform proper state tracking as
explained below.

Figure 6 compares the throughput in relation to the
sending rate for stateful filtering with twenty thou-
sand state entries. Both pf and IPFilter exhibit the
same behavior when overloaded. However, IPFil-
ter reaches overload at a packet rate of about four
thousand packets per second whereas, pf does not
reach overload until about six thousand packets per
second.
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Figure 5: Maximum throughput with increasing number of rules
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Figure 6: Stateful filtering with 20000 state entries (throughput)

The latency comparison for this test is shown in
Figure 7. The latency increases as expected when
the packet filters reach overload.

Similarly to the second test, the procedure is re-
peated for various state table sizes between one and
twenty five thousand. Figure 8 shows the maximum
lossless throughput rate as a function of the state
table size. We notice that pf performs significantly

better than IPFilter when the size of the state ta-
ble is small. At ten thousand state table entries,
IPFilter starts to perform better than pf, but the
difference is not significant.

We expected Figure 8 to show the O(1) behavior
of hash table lookups for IPFilter and O(log n) of
tree lookups for pf. However, it seems that the con-
stant cost of hash key calculation is relatively high,
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Figure 8: Maximum throughput with increasing number of states

and IPFilter still depends on n for some unknown
reason.

Iptables has not been included in this benchmark
because it does not do stateful filtering compara-
ble to pf and IPFilter. The version of iptables that
we tested employs connection tracking without any
sequence number analysis for packets outside of the
initial TCP handshake. While this is unsurprisingly

faster, it would be an unfair performance compar-
ison. There is a patch for iptables that adds se-
quence number checking, but it is still beta and is
not included in the GNU/Linux distribution used
for testing.



3.4 Discussion

The stateless benchmark indicates that rule set eval-
uation is very expensive in comparison to state table
lookups. During the initial tests, pf was consider-
ably slower in evaluating rules than IPFilter.

The slower performance is explained by the fact that
pf used to evaluate the rule set three times for every
packet that passes an interface: twice to look for
scrub rules which determine whether IP and TCP
normalization should be performed and once to look
for pass and block rules.

This problem can be rectified by a simple optimiza-
tion. It is sufficient to add two additional skip-steps
for rule types scrub versus pass/block and the direc-
tion in versus out. This change which is now part of
OpenBSD 3.1 improves the performance of pf’s rule
set evaluation considerably, as shown in Figure 9.

The benchmarks measure only how packet filter per-
formance scales for extreme cases to show the be-
havior of rule set evaluation and state table lookup
algorithms, e.g., completely stateless and when all
packets match state. In real-life, a firewall will per-
form different mixtures of these operations, as well
as other operations that have not been tested, like
creation and removal of state table entries and log-
ging of blocked packets.

Also, real-life packets rarely require a complete eval-
uation of the rule set. All tested packet filters have
mechanisms to reduce the number of rules that need
to be evaluated on average. Iptables allows the def-
inition of and jumps to chains of rules. As a result,
the rule set becomes a tree instead of a linked list.
IPFilter permits the definition of rule groups, which
are only evaluated when a packet matches a head
rule. pf uses skip-steps to automatically skip rules
that cannot apply to a specific packet. In summary,
iptables perform the best for stateless rules and pf
performs the best when using stateful filtering.

4 Future work

There are still several areas in which pf may be im-
proved. Plans for future work include among other
things the following:

• application level proxies for additional proto-
cols,

• authentication by modifying filter rules to allow
network access based on user authentication,

• load-balancing, e.g., redirections translating
destination addresses to a pool of hosts to dis-
tribute load among multiple servers,

• fail-over redundancy in which one firewall repli-
cates state information to a stand-by firewall
that can take over in case the primary firewall
fails and

• further TCP normalization, e.g., resolving over-
lapping TCP segments, as described in the traf-
fic normalization paper by Handley et al. [5].

5 Conclusions

This paper presented the design and implementa-
tion of a new Stateful Packet Filter and compared
its performance with existing filters. The key contri-
butions are an efficient and scalable implementation
of the filter rule set and state table, automatic rule
set optimization and unique features such as nor-
malization and sequence number modulation.

The benchmarks show that the lower cost of state
table lookups compared to the high cost of rule set
evaluations justify creating state for performance
reasons. Stateful filtering not only improves the
quality of the filter decisions, it effectively improves
filtering performance.

The new Stateful Packet Filter is included in
OpenBSD 3.0 released in November 2001. The
source code is BSD licensed and available in the
OpenBSD source tree repository [7].
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